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An efficient method has been developed for the application of the surface acoustic
impedance condition in time-domain solutions of aeroacoustic problems, such as the
broadband-frequency simulation of a flow-impedance tube. The basis for this method
is the standard impedance condition stated in the frequency domain as the particle
displacement continuity equation. The development of the time-domain impedance
condition follows the relations among the frequerey,and discrete-time domains
and a rational function representation of the impedance in-tt@main. The resultant
impedance condition consists of finite, infinite-impulse-response type, digital filter
operations in the time domain, which is very suitable to computational aeroacoustics
algorithms. This paper describes the present approach and discusses the time-domain
numerical simulations of the NASA Langley flow-impedance tube with a constant
depth ceramic tubular liner. Both single and broadband-frequency simulations are
performed. Excellent agreement is shown with experimental data at various frequen-
cies and flow conditions. @ 1998 Academic Press

Key Words:flow-impedance tube; computational aeroacoustics; impedance con-
ditions; z-transforms; nonreflecting boundary conditions; finite difference.

1. INTRODUCTION

The development of time-domain surface acoustic impedance conditions is nece
for realistic applications of computational aeroacoustics (CAA) techniques, such a:
computation of sound propagation through a turbofan engine inlet [1-4]. Relatively ¢
modern turbofan engines rely heavily on acoustic treatment (liners) on the inlet wall [!

As the design [5, 6] of treatment panels is laborious and expensive, their tests [7, 8] t
selves can also be quite time consuming and costly, especially when broadband-freq
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response is sought. Therefore, numerical techniques are often used to analyze sound
agation in lined ducts [7-10]. A time-domain method [11] is most suitable for the analy:
of broadband-frequency problems.

Until recently only frequency-domain methods had been developed for the predict
of sound propagation in acoustically treated ducts [7], as well as for the extraction
the impedance property (inverse problem) of the material [9, 10]. This is because
development of time-domain impedance conditions had been hindered by the fact tha
behavior of the lining material is frequency dependent [5]. In the past two years atten
[11, 12] were made toward the development of a time-domain impedance condition.

In 1996, inspired by the computational electromagnetics (CEM) community [13, 14], t
present authors [11] used tkdransform to develop a numerically efficient time-domain
acoustic impedance boundary condition. Starting from its standard frequency-domain c
terpart [15] (particle displacement continuity), the authors formulated the impedance c
dition as only infinite-impulse-response (lIR) [16] type, digital filter operations, using tt
previous acoustic pressure and velocity information as well as the current acoustic velc
information in time. They demonstrated by one- and two-dimensional model problems t
the developed boundary condition had potential promise for realistic applications.

In the same time frame, Tam and Auriault [12] addressed the stability of the stand
formulation of the impedance condition. They claimed that, when applied in the soluti
of the linearized Euler equations in a uniformly moving medium, this boundary conditit
produces a convective instability (Kelvin—Helmholtz type). They attributed this instabili
to the existence of a vortex sheet used to simulate a narrow zero-velocity fluid layer adja
to the wall as discussed by Tester [17]. However, their stability analysis was not consist
the existence of the vortex sheet was not explicitly considered. Interestingly, the pre:
authors used the same impedance condition with flow in the solution of the lineari:
Euler equations and observed stable solutions in the time domain. Supported by this
the inconsistency mentioned above, Tam and Auriault’s stability analysis of the impeda
condition is questionable.

Itis the purpose of this paper to validate the developed time-domain impedance condi
by solving an actual engineering problem. In particular, time-domain numerical simulatic
of the NASA Langley flow-impedance tube facility are performed both with and withot
flow. The simulations are carried out in two dimensions by solving the linearized Eul
equations in the interior domain together with nonreflective conditions at the inlet and ou
boundaries of the test section and the time-domain impedance condition on the acousti
treated portion of the wall. The two-dimensional inflow boundary conditions of Giles [1.
are used, together with a source condition to generate the incident waves at the de
frequencies and sound pressure levels, as well as to allow the passage of the outgoing v
without reflection at the source plane. Both single-frequency and broadband-freque
calculations are realized. It should be noted that this paper represents the first attem
solve in the time domain an actual aeroacoustics problem with acoustic treatment.

Comparisons with experimental data reveal excellent agreement, especially at high
guencies, up to a flow Mach number of 0.3. This indicates that the present method is cap
of producing the frequency-dependent response of the lining material accurately, des
the usage of a uniform mean flow assumption.

The mathematical development is described in the next section. First, the derivatiot
the time-domain impedance condition is summarized, and then the governing equations
nonreflecting boundary conditions are given. Next, the temporal and spatial discretizati
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of the equations are discussed, and finally the results are presented and conclusio
drawn.

2. METHODOLOGY

2.1. Impedance Condition

A general form of the frequency-domain impedance condition was derived by Myers [
This derivation assumes that a soft wall (acoustically treated surface) undergoes ¢
deformations about a mean stationary surface in response to an incident acoustic field
the fluid and this acoustic field is a small perturbation about a mean base flow. This bour
condition satisfies the continuity of particle displacement and is given, with“artime
dependence, assuming that the impedance has no spatial variation, as

i P, X) +Vo(X) - V@, X) =N - [n- VVoX)]p(w, )= — [ioZ@)][n-V(e.x]. (1)

wherep is the complex amplitude of the pressure perturbaﬁomthe complex amplitude
of the velocity perturbatiom is the mean surface normal,is the circular frequency

is the impedance, andy is the mean velocity about which the linearization is performe
The impedance is a frequency-dependent complex quantity given by

Z(w) = R(w) + 1 X(w), @

whereR(w) and X (w) are the resistance and reactance, respectively, of the lining mate
The impedance surface is assumed locally reacting [5, 19]; thus, the behavior of the |i
material is independent of the surrounding.

Mathematically, the time-domain equivalent of the frequency-domain impedance ¢
dition given by Eq. (1) may be derived directly by taking its inverse Fourier transfor
However, this results in a convolution integral whose evaluation requires long time hi
ries of the normal velocity perturbation. Therefore, a straightforward implementatior
the impedance condition in the time domain is impractical, especially for multidimensio
problems.

The present authors [11] derived an efficient method for the implementation of the al
impedance condition in time-domain algorithms usingzttieansform and its time-shifting
and convolution properties. The idea of using thieansform comes from the impedance
condition applications of the computational electromagnetics community [13, 14]. The
velopment of the basic time-domain acoustic impedance condition was outliizzybik
and Long [11], giving examples of one-dimensional numerical and analytical solution:
a Gaussian pulse reflected off an acoustically treated wall. They showed excellent a
ment between the computed and exact solutions. Here we summarize the basic metho
an extension of itgz-domain time-derivative operator to bilinear and second-order cent
difference approximations.

The two important properties of theetransform [13, 16] are time-shifting and convolu-
tion, similar to the Fourier transform. ¢fnAt] represents thath time-discrete sample of
the continuous variablg(t), the time-shifting property is given by

Z{ql(n — DAt]} = z 1 Z{q[nAt]} = 2 'Q(2), ®3)

whereZ is thez-transform operator, an@(z) is thez-transform ofj[nAt]. The convolution
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property is given by
Z{f[nAt] x g[nAt]} = F(2) G(2), (4)

where f[nAt] = g[nAt] indicates the discrete convolution of functiohsandg, and.F(z)
andg(2) are theirz-transforms, respectively. A discrete convolution is an approximation
the continuous convolution of the exact formulation.

With the help of the time-shifting property (Eqg. (3)) and with a first-order backward, or
second-order central difference, or a bilinear approximation a time derivative operator
be written in thez-domain as

9 1+8 zz-z1
- (1+o)At 1+ z1L

where 8 =0 ando =0 for the first-order backward differencg;=0 ando =1 for the
second-order central difference; afid= 1 ando = 0 for the bilinear approximation. The
bilinear approximation is in general more accurate than the first-order backward differe
[14].

Thus using Egs. (4) and (5) the frequency-domain impedance condition (Eq. (1)) or
z-transform of its inverse Fourier transform may be written inzkdomain, suppressing
the space dependence for brevity, as

iw

=T7(2), )

1+ -zt
(1+U§At 1+ ﬂz—l P(2+[Vo-V—n-(n-VVo)]P(2)

_ 6)
1+ 27—zt (
=- P — 22 W (2),
(1+o0)At 1+ 8z
whereP (z) andV, (2) are thez-transforms of the pressure and normal velocity perturbation
respectively, and (z) is thez-transform of the impedance. This equation may be written &

[T(2) + Ls]P(2) = H(2) Va(2), (7)

whereT (2) is the time derivative operator given by Eq. (B} s the spatial operator given by
£S=V0-V—n-(n-VVo) (8)

andH(z) = —7 (2) Z(2). ThusH(z) of Eq. (7) can be thought of as the filter of the acous:
tic system, whose input and outputs &gz) and [7 (2) + Ls] P(2), respectively. Such a
system produces stable outputs if the pole#{¢f) are confined within the unit circle in
the z-plane [16], provided that the input remains bounded.

Now let thez-transform of the impedance be modeled in general by

a+ YAzt
1- nylbkz_k ’
wherea’s andb’s are constant parameters that give the best approximation to the impeda
data. Then, in order to obtain the time-domain impedance condition, we first substit
Eq. (9) into Eq. (6) and then multiply the resultant equatioriby z~1)(z1~7) and by the
denominator of Eq. (9). Then rearranging and taking the in&tsnsform of the resultant
equation we obtain

1+ ﬂ pn+l _ pnfo
1+o0 At

Z2(2) = ()]

n+1 n—o
1+B8v)™ =]

L n+1—-o — _
+EsP 1+o At

+ Rn,nfl,...’ (10)
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whereLs is as defined by Eq. (8) and

My 1-¢ n—o—¢
1+ pht -
Rnn 1,.. C n—o _E n n
P LsP eilagl—i—o At

1+ n+1-k n—o—k
+Zb { P Atp + Ls(p™T*0 4 gp" k)| (11)

in which p andwv, are the pressure and normal velocity perturbations on the wall, resg
tively, and the superscript on a variable represents ti¢h time sample of the associ-
ated quantity. That igj[nAt] = q". The latter is the assumed notation for the remainin
discussion. Equation (10) is the general discrete-time-domain impedance condition
will be validated later with numerical simulations of the NASA Langley flow-impedan
tube.

In general, the solution of Eq. (10) for the current time step acoustic pregsurg,
requires the current time step acoustic veloaify;}, and the acoustic pressure and velocit
histories of lengthd1p andMy, respectively, wherdlp is the number of the constalns,
andMy is the number o&’s in thez-domain impedance model (Eq. (9)). The valueMgf
and Mp vary depending on the frequency-dependent details of the impedance data. |
ceramic tubular liner, for example, used in this paper and as will be shown in the Appen
My andMp are 5 and 4, respectively. At this point it should be mentioned that the acou
system is considered causal. In other words, acoustic perturbations are assumed abs
t < 0. Thisis areasonable assumption since most CAA simulations start with a null acol
field.

2.2. Modeling of Impedance

The impedance has to be modeled first in thdomain in order to apply the above
boundary condition in a numerical algorithm. The frequency-dependent behavior of
resistance and reactance must be provided accurately in the frequency range of int
Substitutingz—* from Eq. (5) into Eq. (9), one can show that the resistance and reacta
of the impedance must satisfy two equations of the forms, respectively,

R(w) . 8o+ 8107 + G0 + - -
0oCo - Bo + Blwz + 52w4 +
X(w) Co+ G + Cz0® + - - -
PoCo B do + dlwz + dzw4 +

(12)

(13)

wherepo andc, are the ambient density and speed of sound, respectively,dnd, and

d are constant parameters that give the best approximations to the actual resistanc
reactance data. Notice that the resistance is an even function and the reactance is
function of the circular frequenay. The reason for this is that whenis substituted from
Eq. (5) into the above models, thelependence from thedomain impedance is removed
so that it becomes

Z(2) = R(2) + X(2). (14)

Hence the correspondirags andb’s of Eq. (9) are easily identified.
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FIG. 1. Frequency-dependent resistance and reactance of a constant depth ceramic tubular liner (CT7z

The constant parameters of Egs. (12) and (13) are not independent since their deriva
start from Eq. (9). These parameters are found using a nonlinear least square fit (NL
algorithm based on the Levenberg—Marquardt method [20].

However, because of its rational form, there are some restrictions ta-doenain
impedance function. For the stability [16] of the left-hand side of Eq. (7), the denon
nator of the impedance must not have zeroes outside the unit circle dhimain. Also
for causality the region of convergence must be outside the outermost phle)oT hese re-
strictions limit the flexibility of the NLSF procedure. Although, applying the NLSF metho
to Egs. (12) and (13) independently, we found quite accurate resistance and reactance
resentations of the experimental impedance data used in this paper, these represent
did not meet the stability and causality criteria. Somewhat less accurate but a causal
stable impedance function, shown together with the measured data in Fig. 1 for the cere
tubular liner used in this paper, was obtained using the combination of low-pass, band-f
etc. type filter functions,

Z(w) . o —1r1 i wr g4
poCo T Itiars | (1—w?/rd) +ials

+iwry, (15)

where the constants , 7 were determined in an iterative manner ensuring that both tt
real and imaginary parts of the impedance were produced sufficiently accurately. Ini
guesses of these parameters were crucial for the convergence of the NLSF iteration pro
The final values of these parameters are given in the appendix for the data shown in Fi
Thez-domain equivalent of Eq. (15) can be found easily using the relation given by Eq. (

2.3. Governing Equations

The NASA Langley flow-impedance tube facility has a rectangular cross section w
hard side walls (zero admittance). Plane waves are used as the acoustic source at theinl
there is no mechanism to generate spanwise variations in the tube test section. There
the numerical simulations are performed using the 2D linearized Euler equations, gi
here for completeness, in the Cartesian coordinate system with a uniform flow xa the
direction,

9Q  9E  9F

T oo 16
at Tax oy (16)
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whereQ = [p,u, v, p]",

PoU + Ugp Pov
£ ) Yo+ p/po CF= 0 (17)
Uov P/ po
UoP + pocdu PoCEV

in which p is the density perturbation, is the velocity perturbation in the-direction,v

is the velocity perturbation in the-direction, andp is the pressure perturbation, and the
quantities with a zero subscript indicate the undisturbed quantitiescyvithing the speed
of sound.

2.4. Nonreflecting Boundary Conditions

Calculations are performed on truncated computational domains using nonreflec
boundary conditions. The 2D nonreflecting boundary conditions of Giles [18] are u
here. A source term is added to these conditions at the inflow boundary to generat
incoming train of acoustic waves to simulate the real situation in the flow-impedance t
The test section of the tube is depicted in two dimensions in Fig. 2. This facility will
described later in Section 3.

The characteristics of the 2D linearized Euler equations are

a p—Co
C2 poCov
= = 18
Q C3 P + poCoU (18)
Cs P — poCoU

wherecy, ¢y, €3, andc, are associated with entropy waves, vorticity waves, and downstre
and upstream running pressure waves, respectively. Nonreflecting boundary condi
are imposed for the;, ¢, andcz characteristics at the inlet (source plane), anddhe
characteristic at the outlet. These boundary conditions are described below.

2.4.1. Inflow Conditions

The numerical simulations of the flow-impedance tube require that the inflow bounc
allow the passage of both the incoming incident plane acoustic waves and the outg
waves. The presence of the liner causes the generation of additional modes (nonf

y Traversing microphone
Hard wall measurement locations

Inlet £E

PDDD

Hard wall Liner | Hard wall

0in 8.25in 23.50 in 33.0in
(not to scale)

FIG. 2. 2D schematic of the test section of the NASA Langley flow-impedance tube.
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waves) in the duct that can propagate in both directions, although they are expecte
decay rapidly in the present configuration. The condition for the inlet boundary to
nonreflective, yet at the same time a source plane, is achieved by the addition of a so
term to the boundary condition for the downstream running pressure wgysitnilarly to
that of Hwang and Lee [21]. The complete set of equations at the inflow boundary is gi\

by

8Qin Gl Ein 0 Fin
ot X ay

= Snv (19)

whereQj, = Q and are the characteristics given by Eq. (18) and

0 0
o 0 Fo_ (Co + Ug)C3/2 + (Cop — Ug)Ca/2
" 0 o (Co — Uo)C2/2 ’
(Up — Cp)Cs CoC2
0
S = 0 (20)
" 22 pres 10720 cogwt)

0

The source term on the right-hand side of¢heharacteristic equation enables the creatior
of a plane wave at a circular frequency®find a sound pressure level (SPL)AEB (pres
is the reference pressure).

2.4.2. Outflow Conditions

The present simulations assume that there could not be reflections from the outlet bol
ary, although in real situations the impedance of the medium at downstream locations o
duct was measured to have both real and imaginary components. This indicates that ir
there exist reflections from downstream sections of the duct. This phenomenon is know
occur when the local conditions change (such as nonuniformities in the duct cross sec
and duct termination). However, the measured impedance values indicated these reflec
were small. Therefore, they are ignored in this paper. To treat the outlet boundary col
tions as nonreflective, 2D conditions are required since the additional modes could ci
transverse velocity components downstream, especially when the outlet boundary is pl
close to the liner trailing edge. The two-dimensional outflow condition of Giles given fi
the ¢4 characteristic is used. The others are constructed from the interior equations.
present the complete set of equations for the outflow boundary in the same differential f
as Eq. (19), with

UpC1 0
UpCo Co(C3 +C4)/2
Qout an7 out (UO + CO)CB > out CoCo s Sout ( )
0 CoC2

In most situations here, it was found sufficient toget 0 and to extrapolate the other
characteristics from the interior. This is because the present configuration causes attenu
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of the nonplanar modes generated by the liner quickly. Results using both Egs. (21)
this simpler form ¢, = 0) will be shown later in Section 4.

The dependent perturbations at the inlet and outlet could be found from Eq. (18
inversion after the solution of the boundary conditions for the characteristics:

p=[—ci+3(Cs+cq)]/C3,
U = (C3 — C4)/200Co,

v = C2/00Co,
p=(C3+Ca)/2.

(22)

2.5. Numerical Implementation
2.5.1. Time Integration

The four-stage, compact Runge—Kutta scheme is used for the time integration in
paper. For linear equations this method results in fourth-order time accuracy. If the s
discretized time-dependent partial differential equations are given by

d
& - @ -1l (23)
the R-K scheme is given by
QY =Q".
Q" = Q" — st [H(Q*) ~ (7))
Q" =Q¥, (24)

whereQ is the vector of dependent solution variablEgQ) is the collection of the spatial
derivatives,D(Q) is artificial dissipation, and\t is the time increment from one step to
the next, andvs=1/4,1/3,1/2,1 for s=1, 2, 3, and 4, respectively. Although artificial
viscosity may deteriorate the results of long time integrations, it is required by the
sic scheme to control nonphysical, high-frequency, background numerical oscillations
minimize the effects of artificial dissipation, fourth- or sixth-order, low, constant-coefficie
dissipation is used, depending upon the spatial discretization of the resiti(@l§ [ These
will be discussed later.

For flat-wall boundary problems with a uniform mean flgiy= ugé, Ls = ugd/dx and
the time-discretized impedance boundary condition simplifies to

1 n+1 _ [n—o a n+1—o 1 n+l _ . n—o
+ :3 p p + Uo p - _ + :8 % v + Rn,n—l,...’ (25)
1+o At X l1+o At
where
—0 Mn 1-¢ n—o—¢
op" 1+ B0t —y
Rn,n—l..., — —8u _ a n n
o455 ; ‘1+o At

M
S 1+ ,3 pn+1—k - pn—a—k 0 n+1—k— n—k—
_ g o . 2
+Zk:1bk[1+a At +Uog (P AP (26)
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This condition requires the full time step solutiop&* andv"** on the acoustically
treated wall. The impedance condition states that there is transpiration of mass into or
of the wall. That is, no longer i¥ - n£0, as opposed to a hard-wall case. The amour
of mass transpiration is fixed by the impedance of the wall. Therefore, instead of sim
extrapolation of the density and the tangential velocities from the interior solution as in
case of a hard wall, we simply use the interior equations to solve for these quantities.
normal velocity in this case can also be solved using the interior equations. However, s
the impedance condition has resulted in an implicit relation between the acoustic pres:
and normal velocity on the wall, either the acoustic pressure or normal velocity at the curi
time leveln 4 1 (full time step) must be provided by the flow solver. The other is obtaine
from the impedance condition. However, the application of the impedance condition in
R-K stages poses a difficulty because the intermediate solutions are advanced by frac
of the time step size. This is overcome by assuming that the acoustic velftity the
available value of}*! and this is then substituted into the impedance conditionfot to
obtain p® as the available value gf"** on the wall.

Thus the impedance condition may be rewritten, leaving the time-derivative opera
switchesB ando intact, as

1+p[p®—p" p"—p"” ap® ap"
1-o0o)u =—oUp—
1+o{ wAt At | TAT TS TH0%x
1+ B[v® =" "= -
_ Rn,n 1,...’ 27
ao1 +o [ asAt + At * 27)

whereR""~% is as given above. Note that in the casggef 0 ando = 1 the central time
derivatives of the acoustic pressure and velocities are approximated by the average o
backward differences, taken at the R-K stégjeand the time step, respectively.

As mentioned earlier, the acoustic system is assumed to be causal. Therefore, the old
derivative termsin the above equations are all zero to begin with, and they will be construc
as the time integration progresses. Now consider that the implicit pressure derivative te
i.e.ap®/ax, is absent oty = 0 (no flow) and the time derivative of the normal velocity
is obtained from the R-K scheme explicitly (Eq. (24)). Then the time-discrete impedar
condition can be rearranged to give

p(s) — pn — asAt [Rl(p"’”_l’“‘) + Rz(v(s)) + Rs(vn’n_l"“)], (28)

whereRR1,3( ) are the collection of the remaining terms from Eq. (27). These terms w
be of the same order of accuracy in time as the updated solution since they are basi
composed of the old solutions and the current stage velocity solution from the R-K sche
Therefore, Eq. (28) is nothing but an R-K update which will result in a fourth-order accure
integration of the acoustic pressure at the end of the time step. However, we found tha
explicit solution of the normal velocity on a soft wall sometimes results in a numeric
instability, even if there is no flow. The wall impedance is influential on this behavior.
circumvent the stability problem and account for the fact that the impedance condit
contains an implicit pressure derivative term from its inception, we discretize the norn
momentum equation implicitly in pressure as well. In this case, we no longer poss
higher-order accuracy in the integration of the impedance condition. Of course, high-or
schemes are desirable in CAA, but this is the exchange one has to make for stable solut
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Nevertheless, we believe relatively more accurate than first-order results may be obt:
with the current time-integration approach, because of its multistage nature and use «
acoustic velocity from the R-K scheme.

Now, as we mentioned, the normal momentum equation is discretized semi-implic
(implicit in pressure derivative) within an R-K stag® and its simultaneous solution with
Eq. (27) is performed. The time-discretized normal momentum equation is given by

p® — N gD 1 9p®
+ Up —_—— =
asAt daX po 9y

D(v?). (29)

Although it may seem that taking tla@/dy derivative in the normal momentum equatior
at the current R-K stage) rather than the previous stage would require an implicit solutic
in the entire computational domain, the interior solution is performed explicitly and mz
available prior to the application of the impedance boundary condition. Hence the imp
characteristics of the impedance condition and the normal momentum equation are cor
only on the soft wall where they are being applied. The semi-implicit discretization of
momentum equation enhances numerical stability, as was also shown with one-dimens
example calculations in Ref. [11].

2.5.2. Spatial Discretization

The substitution of Eqg. (29) into Eq. (27) is made to eliminafé from the impedance
condition,

asAtug 9p® _ aoasAt p®

(s) 2 n n n—o
+(A-0 = -« -
p ( ) 118 ox o Oy p s(pPr=p"")
asAtug op" v o N — e
—-o(1 — At|u - DOW9) - ————
ot o) g g T Al U () At
asAt _
+ (14 0)——R™ ", 30
A+oity (30)

where R""~1- is as given by Eq. (26). Note that some of the terms in these equati
vanish when the values gfando (0 or 1) are substituted.

Although Eq. (30) has now onlp® as an unknown, its solution is a significant issu
in the case of flow and = 0. When this equation is discretized in space witk O, the
result is a linear system of equations arising fromub@p® /3x term. For a fully three-
dimensional problem, this term is equivalent to the product of the tangential gradient of
acoustic pressure and the mean tangential velocity on the wall. The impedance condit
applied at every R-K stage, and therefore, the linear system of equations (space-discr
form of Eq. (30)) has to be inverted at every R-K stage to determine the wall pres:
perturbationp®. Then the velocity perturbationf® is found conveniently from Eq. (27)
or Eq. (29). As mentioned earlier this process has to be preceded by the solution o
interior and hard-wall points so that the linear system of equations is closed with the
information from the outside of the soft-wall.

Second- or fourth-order accurate spatial discretization (central in the interior and bi:
at or near the boundaries) is used in boththendy coordinates for the solution of the
flow-impedance tube problem. In most cases here the length of the test section of the
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o ;W Explicit soln. (interior and hard wall)
0O Implicit soln. (soft wall) points

3
2

-~ j=3/2
HARD WALL | FT WALL E .
20 Ghost points

FIG. 3. Spatial discretization at and near the wall.

is only several wavelengths at the highest of the considered frequencies; and therefore
will easily have sufficient resolution (number of grid points for wavelength, NPPW) to u:
only second-order discretization.

Constant mesh spacingadX andAy) are used in both the andy directions. The wall
is placed halfway between two grid points, allowing a ghost grid point inside the wall,
shown in Fig. 3. This permits the proper discretization of the equations since there e
both incoming and outgoing waves at a soft-wall boundary, as opposed to a solid wall
flow cases, the second-order spatial discretization of the impedance condition results
tri-diagonal equation system and the fourth-order discretization results in a penta-diag
equation system. Discretizing this equation on the wja@/2) yields an equation system
in the unknown wall ghost point acoustic pressure in general,

Ap®, 211 Bi P 1 1+ G pl(sl) + Di pi(i)l,l + E; pi(i)z,l = RHS, (31)

where the subscriptsignifies the grid point index in the direction. For the second-order
discretizationA; and E; are zero (tri-diagonal equation system). For the no-flow case
o=1,A, B, D;, andE; are all zero, ang? is simply given byp(S = RHS/C;.

In obtaining the above linear system of equations the wall pressure was assumed t
given by an interpolation formula. In fact, any quantity at the wall is found from

Gi32 = P10,1 + P20 2 + P30 3 + Pal 4, (32)

whered ;1 is the ghost point quantity inside the wall (Fig. 3). For the second-order ca
¢1=1/2,¢o = 1/2,¢3 = 0,andp, = 0. For the fourth-order cagg = 5/16,¢, = 15/16,
¢3 = —5/16, andp, = 1/16.

As mentioned earlier, fourth-order dissipation is used with the second-order calculati
of the residuals, and sixth-order dissipation is used with the fourth-order calculations. -
fourth- and sixth-order dissipation is given, respectively, by

DPQ) = — x® (84+84)Q DO Q) = ((86+8)Q (33)

where(Sf(‘Qh,,- = Zfzfz wr Qifr,j Withwy =[1, —4, 6, —4, 1]forr = -2, ..., 2 and, simi-
larly, (SSQ'LJ‘ = 2?273 wr Qi4r,j Withw, =[1, —6, 15, —20, 15, -6, 1]forr = -3,..., 3,
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respectively. The/-direction operators are defined similarly. Dissipation is set to zero i
value beyond a boundary is needed. Typical values of the constédhésdx © are /128
and 1/512, respectively.

3. EXPERIMENTAL SETUP

Two test specimens were used in the current investigation. The first was a hard-
specimen. Since the results for this configuration are well understood, this provided a u
check for the current analytical procedure. The second test specimen was constructe
ceramic tubular material, which consists of a large numbei%dﬁch diameter parallel
tubes. The open cell porosity and total depth of this liner are 57% and 3 in, respecti
This material is very useful for laboratory studies [7] because of its consistent prope
which can be described well analytically. Also, changes in the impedance of the cer:
tubular material due to grazing flow effects are relatively minor. The frequency-depen
impedance of this material is plotted in Fig. 1.

The input data used to extract the impedance of the test specimen was obtained from
surements using a flow-impedance tube in the NASA Langley Flow-Impedance Test |
oratory [7]. This multiconfigurational apparatus is designed to produce a controlled ae
coustic environment with a flow speed of up to Mach 0.6 over a test specimen length of (
16 in. Four 120-W, phase-matched acoustic drivers generate signals over a frequency
of 0.3 to 3.0 kHz, with sound pressure levels up to 160 dB at the test specimen leading ¢

The current study was conducted with a test specimen length of 15.25 in and with
of 130 dB at each frequency of interest at the source plane. A schematic of the f|
impedance tube test section is provided in Fig. 2. The side walls and the upper wall |
zero admittance throughout the test section. This section is approximately 33 in long,
a 2-in by 2-in cross section. Acoustic plane waves are propagated down the tube (le
right in the figure), across the surface of the test specimen, and into a termination se
designed to be very nonreflective over the frequency range of interest (0.5 to 3.0 kHz)
0.5-in wide precision-machined slot in the top wall of the flow-impedance tube allows
axial traverse bar to traverse the test section length by means of a digital stepping n
under computer control.

At each test frequency, a pure tone sound pressure level was set at the source |
Acoustic pressure measurements were acquired with the traversing microphone (mo
in the axial traverse bar) at a number of selected measurement locations from 8.2
upstream of the leading edge of the test specimen to 0.75 in downstream of the trailing
of the test specimen.

4. DISCUSSION OF SIMULATIONS

The results are discussed in this section. The numerical simulations are performec
compared with experimental data for a frequency range of 0.5 to 3.0 kHz with 0.5 k
increments and at mean-flow centerline Mach numbers of 0.0, 0.1, 0.3, and 0.5. Ir
experiments with Mach numbers higher than 0.5, very strong reflections occurred f
the downstream terminating section of the duct and as a result no data was meas
Therefore, we do not attempt to perform numerical simulationdfor 0.5. As mentioned
earlier, changes to the impedance of the ceramic tubular material due to grazing flow ef
are relatively minor. For convenience, therefore, the same impedance data are used
Mach numbers.
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Before discussing the results it is useful to describe the analytical impedance functi
used for the calculations. Both single-frequency and broadband-frequency computat
are carried out for investigating the effects of various parameters on the solutions
for validating the present method against experimental data. Depending upon the acol
source and the impedance function, the simulations are denoted either single-frequ
simulations A (or B) or broadband-frequency simulations, as described below:

1. Single-frequency simulations Ahis set of simulations uses an assumed impedanc
function of the form

Z(w)
£0oCo

where Ry is the specific resistance, aadandb are two adjustable parameters to obtain
the correct reactance at the specified frequency. This form of the impedance functio
useful for single-frequency runs simulating the exact (experimental) impedance prope
The z-domain equivalent of this impedance function, which will be referred to as tt
single-frequency impedance function and denotedZkyz) here, is obtained easily by
the substitution of Eq. (5) for thiew term above. Although only the first-order backward
difference(8 =0, 0 =0) is used foriw in the impedance function, we obtain solutions
using the backward, central difference, and bilinear approximations for the time derivat
term in the impedance condition itself.

2. Single-frequency simulations Bhe second set uses the impedance function fror
the nonlinear least square fit applied to Eq. (15). The resultant curves are shown in Fi
Although the resistance is represented quite well, the reactance is somewhat inaccure
some frequencies. Table 1 in the Appendix compares quantitatively the fitted impeda
values with the data. The resultantiomain impedance function, which will be referred
to as the broadband-frequency impedance function and will be denot&g tzy here,
has poles inside the unit circle but they are extremely close to it (see Appendix
Zg(2)). It will be shown below that the predicted SPLs are somewhat sensitive to t
slight differences between the experimental data and approximate impedance values.
set of runs is also performed for each frequency individually. Therefore, the only diffe
ence between the previous set of runs and this set is due to the impedance fdrigjion
used.

3. Broadband-frequency simulatiorisinally in the third set of runs, all the frequencies
are run at once using the impedance functés(z). A fast Fourier transform (FFT) is
performed to the time-accurate solution to obtain the SPLs for each individual frequer
For this the source term of the inflow boundary condition is replaced by

=Ry+iwa+b/io, (34)

6
22 prer 10°7720) " (mawo) cosfmagt + (M — 1)7/3],

m=1

where SPL= 130 dB, andvg = 27 fy with fo = 500 Hz. This set of runs is significant to
show how one can solve broadband-frequency problems with only a single computer
using the present time-domain impedance condition.

In the following discussions, the SPL is calculated from

t2
p?(t) dt. (35)

SPL: 20 Ioglo( prms/ pref); przms =
-t Jy,
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Atrapezoidal integration rule is used to calculate the root-mean-square (rms) pregsire,
numerically. The data required by this equation are collected after the transients leav
computational domain and the field becomes periodic.

4.1. Effects of Various Parameters

First, the ability to generate plane waves at the specified SPL using the preser
flow conditions is tested at various operating conditions without the liner present. Tt
tests use a Courant number (CFL) of 0.5 and a grid resolution of 23 points per w:
length (PPW) in the upstream direction and 32 PPW in the normal direction for
highest frequency (3.0 kHz). The CFL number is defined by EFALt[(Ug + Co)/AX +
Co/Ay]. The simplecys =0 characteristic boundary condition is imposed at the outl
with a second-order spatial discretization of the interior and inflow boundary condit
equations.

Figure 4 shows the SPLs along the upper wall for two sets of extreme operating condit
of the simulated cases in this paper. It is evident from the figure that the inlet bounc
conditions generated the plane waves at the desired SPL (130 dB). The outlet bour
conditions caused only insignificant reflections. Although the pressure levels appear f
very oscillatory, the scale of the vertical axis should be noted. In fact, the reflected w:
caused only a 0.25 dB fluctuation at the worst case, and this was only near the ¢
boundary.

Since the liner causes additional modes to be generated in the impedance tube
important to characterize the behavior of the inflow and outflow conditions against rr
complicated sound fields. This is realized using three different size domains with a br
band-frequency source (0.5 to 3.0 kHz with 0.5 kHz increments) and=0.1 flow with a
liner extending from 8.25to 23.5inches on the lower wall. Fourth-order spatial discretiza
is employed in both theg andy directions with a bilinear time discretizatiof & 1, o = 0)
for the impedance condition. The computations are carried out on meshes with a |
lution of approximately NPPW= 227 and NPPW=26.7 at 3.0 kHz and using a CFL
of 0.64.

130.10 . : : . . .
o]
% B M=0.5, =3.0 kHz
S 130.05| M=0.0, {=0.5 kHz 1
&! 130.00 1
2 "—\z'\ s }
T 12995} S ]
E M=0.5, {=0.5 kH T\/\,\ M
& ypg90f M o>ORERE J'V\‘{J'm.
H M=0.0, {=3.0 kHz gt
% 12085} ]
% No acoustic treatment (hard walls)
€ 129.80| 1
=3
o]
(%}

129.75 , , ‘ ‘ ‘ . 1

0 5 10 15 20 25 30

Upper wall microphone location, in.

FIG. 4. Test of the acoustic source at various operating conditions without acoustic treatment, NPBW
NPPW, =32 at 3.0 kHz, and CF& 0.5. Second-order discretization and 1D outflow condition used.
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M=0.1, £=0.5-3.0 kHz with 0.5 kHz increments
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FIG.5. Testof theinflow and outflow boundaries in the presence of a liner extendingfzo8125 to 23.50in.
M =0.1, f = 0.5-30 kHz with 0.5 kHz increments, CFk 0.64 (At = 1/512f,, f, =0.5 kHz), NPPW =227,
NPPW, =26.7 (at 3.0 kHz). Fourth-order spatial discretization g 1, 0 =0 used.

Figure 5indicates the locations of the reference source planes (inlet) and outlet bound:
and shows the resultant total SPLs using both the 2D outflow condition and the sirale
characteristic boundary condition (denoted as 1D in the figure). In all cases the total ¢
curves overlap each other in the extend of the shortest domain and their transitions be!
are very smooth. This indicates that both the inflow and outflow boundary conditions w
very well for the present configuration and frequency range of interest. Therefore, we chc
the source plane to beat= 0 and outlet boundary at= 33 in, as illustrated in Fig. 2, for
the rest of the calculations.

The effects of the spatial discretization on the accuracy of the solutions in the pres
simulations are also investigated using the same acoustic source and resolution paran
as those used in the previous test. The results are shown in Fig. 6 for the total SPL or
upper wall. Although low-order schemes possess higher numerical diffusion and disper:
rates, the solutions yielded by both the second- and fourth-order schemes agree perf
owing to the use of sufficient grid points per wavelength. Since the waves propagate ¢
several wavelengths (at the highest frequency) before they leave the computational doi
and consequently numerical errors will not accumulate considerably, we usually emf
at least 20-25 PPW to obtain adequate results with the second-order scheme. For Ic
domains, or in the case of reflections from the outlet boundary (complex impedance), n
grid points per wavelength will be needed to retain accuracy because the waves will ren
in the domain longer. The NPPW requirement for the fourth-order scheme may be rela
to about 15-20.

The final numerical test concerns the effects of the temporal resolution (CFL) and
time discretization 8, o) of the impedance condition on the solutions. For this a single
frequency simulation ata frequency of 0.5 kHz and flow Mach number of 0.1 is performed
188x 14 grid is used (NPPW= 136 and NPPW= 160). Fourth-order spatial discretization
is employed to keep the spatial discretization errors to the lowest levels possible.

Figure 7 shows the SPLs on the upper wall at various CFL numbers ranging from 0
to 0.08 with both8 =0, =0 andB =1, 0 =0. The calculations using the central time
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M=0.1, {=0.5-3.0 kHz with 0.5 kHz increments
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FIG. 6. Effects of the spatial discretization on the solutidh= 0.1, f =0.5-30 kHz with 0.5 kHz incre-
ments, CFL=0.64 (At = 1/512f,, fo = 0.5 kHZ), NPPW, =227, NPPW, =26.7 (at 3.0 kHz).

difference in the impedance condition (i.8.=0, o = 1) became unstable because of th
flow. Therefore, no results are presented with the central time difference. Sound pre:
levels were calculated integrating the solution over 10 wave periods. It appears that the
step size and the choice gfaffect the solutions only negligibly.

It should be noted at this point that because of the reinforcement of the downstr
traveling sound waves by the upstream traveling waves, the SPL at the reference s
plane is perturbed from what we set (130 dB) for the incoming waves. This can be ¢
in Fig. 7. In experiments the reference plane SPL (which is due to both the incoming
outgoing waves) can be measured and fed to the sound-generating speakers so that ne
adjustments can be made to attain a 130-dB SPL. However, in the numerical implement

M=0.1, f=0.5 kHz
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FIG. 7. Effects of the time discretization of the impedance condition and the time step size of the R-K i
gration on the solutiotM =0.1, f =0.5 kHz, NPPW =136, NPPW = 160. Fourth-order spatial discretization
used.
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it is not convenient to do this and any deviations to the experimental SPL at the refere
plane are subtracted from the solution so that the numerical results can be compared
experiments in the same norms.

4.2. Comparisons with Experiment

After establishing the effects of various parameters, we now perform an extensive
merical study of the flow-impedance tube with comparisons to experiment. As mentior
earlier, simulations are performed at mean-flow centerline Mach numbers of 0.0, 0.1,
and 0.5, using both the single-frequency and broadband-frequency sources.

We first present Fig. 8 to illustrate how the overall sound field looks in the impedan
tube at each particular frequency of interest. These results were obtairndd=dt 1
using the single-frequency impedance function Ar€0, o = 0. Because of the frequency-
dependent response of the liner, the pressure levels are seen to differ substantially &
frequencies of the incident waves are changed. The most attenuation is obtained at 1.C
(near resonant frequency). It will be shown below that as the flow Mach number is chan
the details of the upper wall SPL remain similar but the attenuation rates and levels cha
considerably.

4.2.1. No-Flow Case

The simulations for the no-flow case were performed With 0, 0 = 0 and second-order
spatial discretization on a 18814 grid with a resolution of NPPW= 25 and NPPVy= 26
for the highest frequency (3.0 kHz). Both the broadband-frequency simulation (BFS) ¢
single-frequency simulations A (SFS-A) and B (SFS-B) were performed. A CFL of 0.5 w
used for the SFS-A and SFS-B and a CFL of 0.7 was used for the BFS. An FFT was app
to the broadband solution to extract the SPL for each frequency of interest while the S
of the single-frequency cases were found from Eq. (35).

80 95 100 105 110 115 120 125 130
SOUND PRESSURE LEVEL, dB (p,,=20uPa)

M=0.1

1 PR (- S TR TN (OO T S J O N M W WY (NN T W T WA | W |- " L
0 5 10 15 20 25 30 35
Axial distance, in.

FIG.8. Time-domain numerical simulation of the NASA Langley flow-impedance tube with a constant dep
ceramic tubular liner. Sound pressure level contours are illustrated for each frequendyt at thé flow condition.
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FIG. 9. Upper wall SPLs given by the single- and broadband-frequency simulations (SFS-A/B and Bl
M =0.0, CFL=0.5 for SFS-A/B and CFL=0.64 for BFS. Second-order discretization ghe: 0, o =0 used.
Lowest NPPW = 25.

Figure 9 shows the comparison of the upper wall SPL results of the current calculat
with the measured data. The solid, dashed, and dotted lines represent the SFS-A, SFS-
BFS, respectively. The symbols indicate the experimental data. The agreement betwe
measurements and the current results is excellentin general, except at 1.0 kHz. The dit
ancies seen at some frequencies, especially at 2.5 kHz, between the SFS-A and SFS-B
are due to the differences between the reactance values the impedance fufigtmand
Zg(2) produced at these frequencies. The sensitivity of the results to the perturbatior
the impedance data is sometimes a function of the sound field we are working with. -
is probably the case we have here; and therefore, there is a need to improve the func
representation of the impedance for broadband calculations. This could be done using
terms in thez-domain impedance model. This, however, was not realized in the pres
study.

Also, an interesting situation occurs when the results of the SFS-B and BFS are ¢
pared. These cases both used the impedance furigéti@), and the SPLs corresponding
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FIG. 10. Single-frequency solution at 1.0 kHz with and without FFTVat= 0.0.

to them were expected to be identical. Obviously this is not the case for some frequenc
particularly for 1.0 kHz. Since the BFS results for each frequency were identified throu
an FFT, these discrepancies suggest that, especially at 1.0 kHz, the single-frequency re
contained some low amplitude harmonics or some mean component to the acoustic pre:
and this contributed to the SPLs calculated directly using Eq. (35). This is also evidence
the SFS-B result for 1.0 kHz. To support this we also applied an FFT to the SFS-A solut
at this frequency. Figure 10 shows and compares to experiment the SFS-A results
and without FFT. Now the current simulation at 1.0 kHz also agrees with the experimer
data perfectly. The discrepancy was in fact being caused by approximately two order
magnitude lower mean pressure than the source, as shown in Fig. 11, as the zero freqt

Single-freq. simulation A
M=0.0, f=1.0 kHz

-
[}
(=)

(edvioz=""d) gp “1ds
(4]
o

o

FIG. 11. Existence of a very low, nonzero mean (peaked at 0.0 kHz) along the entire test section at 1.0 |
andM = 0.0.
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FIG. 12. Upper wall SPLs given by the single- and broadband-frequency simulations (SFS-A/B and B
M =0.1, CFL=0.5 for SFS-A/B and CFL=0.64 for BFS. Second-order discretization ghe- 0, o = 0 used.
Lowest NPPW = 22.

component of the FFT results. This figure reveals that the mean pressure existed alor
entire tube, which was not accounted for in the rms calculation using Eq. (35).

4.2.2. M =0.1Case

The simulations for theVl =0.1 case used the same resolution, time, and space ¢
cretization parameters as the no-flow case, except the NRiRA& reduced to 22 because
of the flow effects. The same sets of simulations (SFS-A, SFS-B, and BFS) as the no-
case were performed.

Figure 12 shows and compares the results with the measurements. Although sil
trends are observed in the results, a close inspection of these results and the compa
of the no-flow case indicate that the background flow caused some relative shifts fron
experiment toward higher SPLs. However, these deviations are minor at this Mach nun
The agreement between the current results and the measurements is again excellent,
near the resonant frequency. As has been shown above, however, the existence of a n
mean pressure along the tube applies also to this case.
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FIG. 13. Upper wall SPLs given by the single-frequency simulatiodis= 0.3, CFL=0.5. Second-order
discretization an@ =0, o =0 used. Lowest NPP\\= 23.

4.2.3. M =0.3Case

Only SFS-A were performed & = 0.3. The same size mesh as the previous two case
was used for the frequencies up to 2.0 kHz and a 5 mesh was used for the 2.5
and 3.0 kHz cases, giving a lowest spatial resolution of NPPAR3 and NPPW=26. A
CFL of 0.5 was used for all frequencies. The second-order schemegwith, o =0 was
employed.

The comparisons in Fig. 13 reveal that the computations again captured the detalil
the upper wall SPL very well, but generated some increased deviations from experim
In other words, compared to the experimental data, increased differences in the attenu:
rates are observed as the flow Mach number is increased. As will be shown fdr=t@5
case, this is mainly due to our usage of the peak values from the measured backgr
mean-flow velocity profiles. An improvement is observed when averaged values are us

Notice in Fig. 13 that no results are presented at 0.5 kHz. This is because we encount
numerical instabilities at this frequency. These instabilities arose in the transitional regi
between the soft and hard walls (leading and trailing edge regions of the liner), mer
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due to the infinitely large jumps in the impedance data. It should be noted that the
of a 188x 14 grid resulted in a mesh resolution of NPR¥106 and NPPW= 160 for
this particular frequency and consequently lack of dissipation. Therefore, it was extrer
difficult to control the development of spurious waves.

The broadband simulations (BFS)Mt= 0.3 also failed for the same reason. The mes
was constructed to resolve the highest frequency (3.0 kHz) with at least NERAB/
and NPPW =26 and, on the other hand, this meant six times more grid points for |
0.5 kHz components of the waves. Therefore, it became impossible to suppress the spt
waves, and no solutions could be attained. The existence of a wide range of frequenc
a problem is a major obstacle for numerical methods in terms of resolving them equal

Two attempts were made to alleviate the stability problem. The first included the inc
poration of a spatial variation into the leading term (resistance) of the single-freque
impedance function so that a smooth transition could be made from the soft wall to the
wall viaincreased resistances. A half-Gaussian function was used as a resistance scale
account for this necessary modifications were made to the impedance condition analytit

This, however, worsened the situation; instabilities developed more rapidly. Perhap
needed to incorporate a spatially changing reactance to remove its discontinuity as
However, this would bring a considerable amount of complications to the formulation:
the present method. This is considered for future work.

The second partially successful attempt was to reduce the grid resolution and to
form only a 0.5 kHz single-frequency computation. For this, the spatial resolution in th
direction was reduced by a factor of2 still with sufficient NPPW. Although this pre-
vented instabilities from growing further, we still had shock-like short-wave compone
in the solution in the vicinity of the liner leading (LE) and trailing edges (TE) as illustrat
in Fig. 14 at increasing times. These shock-like spurious waves grew and shrank stati
(i.e., without propagating i), especially in the TE region, as the axial gradient of th
acoustic pressure changed. Figure 15 shows the resultant upper wall SPLs together wi
measured data. The agreement is not as good in terms of the details of the SPL on the
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FIG. 14. Lower wall pressure: shock-like spurious waves at the LE and TE of the Mher0.3 andf =0.5
kHz. CFL= 0.6, NPPW, =69 and NPPVWy= 160. Second-order discretization afie- 0, o =0 used.
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FIG.15. Upperwall SPLaM =0.3andf =0.5kHz. CFL= 0.6, NPPW, =69, and NPP\}= 160. Second-
order discretization anfl =0, o = 0 used.

wall. We think that those spurious waves are responsible for the degradation of the res
in addition to the unaveraged mean flow effects.

4.2.4. M =0.5Case

At the M =0.5 flow condition only the 2.5-kHz SFS-A could be performed. A mest
resolution of NPPW=21 and NPPV= 32 was used for this simulation. Similarly to the
0.5 kHz calculation of the previous case, the calculations became invariably unstable w
the solutions for the other frequencies were sought. The numerical instabilities were I
violent at this Mach number because of the stronger discontinuities in the normal veloci
in the LE and TE regions of the liner. The effects of a discontinuity on the solutiol
are amplified by the termigdv/ax in the normal momentum and impedance conditior
equations. Figure 16 illustrates the growth of the normal velocity discontinuity at the lir
LE at theM =0.5 and f = 0.5 kHz conditions.
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Normal velocity on wall, m/
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L 1 1 1 L
0 5 10 15 20 25 30
Position on lower wall, x, in.

FIG. 16. Discontinuous normal velocity, shown at increasing times, due to hard-soft wall transitio
M =0.5, f =0.5 kHz.
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135 Single-frequency simulation A
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FIG. 17. Upper wall SPL at 2.5 kHz an1 =0.5 with and without mean-flow correction. CFL0.5,
NPPW, =21. Second-order scheme wigh=0, o =0 used.

Itis, however, interesting that the computations remained stable at 2.5 kHz. Thisis per
because the liner response changes with the wave frequency and the 2.5 kHz frequen
not give rise to as strong discontinuities as the other frequencies. The results are sho
Fig. 17, together with the measurement. The discrepancy between the calculation ar
data appears to have increased considerably at this Mach number. As was explained ¢
the main reason for this discrepancy is the usage of the peak mean-flow velocity fron
measurement. The mass deficits due to the boundary layers of these fully developed ch
flows were not taken into account. We can patrtially correct for this using an average velo
A parabolic velocity profile assumption yields an average speeéd,qf— %M. The result
of the calculations using this average value for Me= 0.5 case is also shown in Fig 17.
It is evident that a significant improvement has been gained in the prediction compare
experiment. The agreement between the simulation and the data is how reasonably
Therefore, using the average velocity values forlthe- 0.1 andM = 0.3 cases should also
improve their predictions.

4.3. Computational Cost

The present method was initially programmed using CM Fortran and run on the Thin}
Machines CM-200 and CM-5 computers. Since these computers are no longer availabl
also for portability reasons, the code has been converted to Fortran 90. It can now b
on many computing platforms. For example, a typical simulation on ax1B8 mesh
(with 86 grid points on the soft wall) using 20,000 time steps required about 0.67 t
CPU time on an SGI Power Challenge R10000 processor. The share of the wall bour
conditions (both hard and soft) in this cost was only 2.6%, i.e. 0.017 h, of which o
26% was spent on the calculation B""~1 given by Eq. (26). This simulation used
the broadband-frequency functidfs (z), which hasMy =5 and Mp =4 as shown in
the Appendix. It is clear that the doubling of these parameters would require only \
minor additional CPU time and still efficient computations would be achieved. For t
example calculation, the fourth-order spatial discretization and the bilinear approxima
for the time-derivative term of the impedance condition were employed. Therefore, a pe
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diagonal equation system was needed to be inverted at every R-K stage. It is clear
the spatially second-order scheme would require considerably less CPU time. It shouls
noted that a single-frequency simulation is as costly as a broadband calculation.

5. CONCLUDING REMARKS

The ability to apply impedance conditions in time-domain numerical methods is ex
emely important for applications with acoustic treatment. For this purpose, an effici
time-domain method has been developed usingitiansform. Specifically, the standard
frequency-domain impedance condition has been converted to the time domain as only
type, digital filter operations. This has been accomplished by modeling the impedance |
rational function in the-domain. The resultantimpedance condition uses only limited pa
acoustic pressure and normal velocity knowledge as well as the current normal velocity.
incorporation of this time-discretized impedance condition into the four-stage Runge—Kt
time-integration scheme has been discussed.

Three different time-derivative operators have been used iz-ttemain to formulate
the discrete-time domain impedance condition. These are the first-order backward, sec
order central difference, and the bilinear operators. Although these are low order appr
mations, the impedance condition has been incorporated into the fourth-order R-K sche
The use of the fourth-order R-K scheme in concert with the lower order discretizations of
boundary conditions leads to better accuracy than the use of a lower order time-integre
scheme would. The use of the backward difference or bilinear operator results in an
plicit time-discretized impedance condition when flow exists. Although this is not the ca
with the second-order operator, its use has been found to generate unstable solutions |
presence of flow. The bilinear approximation is more accurate than the first-order backw
difference in general. However, numerical tests using various CFL numbers indicated t
of these approximations yield equally acceptable solutions.

The developed method has been validated by numerical simulations of the NASA Lanc
flow-impedance tube at various frequencies (from 0.5 to 3.0 kHz) and flow conditions (frc
M =0.0to0 0.5). The present work represents the first attempt to solve such a problemin
time domain. The simulations used a uniform background flow assumption with the me
flow centerline velocities. The results indicated excellent agreement at relatively low Me
numbers with this assumption. However, because of this assumption, some discrepal
were observed between the simulated results and experiment as the Mach number
increased. It has been shown that the use of corrected or averaged velocities improv
results at higher Mach numbers significantly.

Also, it was found that the simulation of the flow-impedance tube could be hindered
some flow conditions by numerical instabilities that are triggered by the infinitely lar
impedance jumps in the transitional regions of the soft and hard walls. Although the
instabilities could partially be suppressed in one case by only decreasing the mesh resolt
the results still presented shock-like spurious waves at the LE and especially TE of the i
causing poor prediction of the upper wall SPL. These instabilities could be removed
smooth transitions in both the resistance and reactance. It is, therefore, desirable to
the capability to treat full spatial variation in impedance.

Finally, the standard formulation of the impedance condition (particle displacement c
tinuity) has been shown to accurately describe the linear physical phenomena over ac
tically treated surfaces both with and without flow.
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APPENDIX

Impedance of the constant depth ceramic tubular liner (CT78he impedance of the
liner used in the NASA Langley flow-impedance tube simulations is given in Table 1 bels
The curves shown in Fig. 1 in Section 2.2 were obtained applying a nonlinear least sc
fit to the frequency-domain impedance function given by Eg. (15). The paramgtens
of this equation were found to be

r; = 0.34688814087644

r, = 10994771953585

rs3 = 1662x 102

rs = 8.9946186703464 10°° (36)
rs = 1.8996348959126& 10>

re = 12379898172461

r; = 6.694928001321% 10°°.

Broadband-frequency impedance functioifhe z-domain impedance functioh(z) is
obtained by the substitution ¢f —z~1) / At into the frequency-domain impedance functior
(Eq. (15)) for the w term. Since the-domain approximation of thieo term contains a\t
term, the resultant functiori(z) will be At dependent. Therefore, the time step size of ea
particular run will affect the constant parameter&g#). The time step size for most of the
broadband-frequency runs was taken toMie= 1/(512f), wheref = 500 Hz. Thus, the
impedance functioZ g (z) of Section 3 for this time step size was

Zp(2 _dtamz '+ @z’ +aztazt

PoCo 1—byz 1 —byz2—byz3 ’ 37)
where
ap = 17.5647781535215
a; = —69.4730957492080
a, = 103156370589274
a3 = —68.1512164562849 (38)

as = 16.9032230636361
b; = 2.98393221010723
b, = —2.97017509982092
bs = 0.986242347629329

TABLE 1
Measured and Fitted Specific Resistance and Reactance Values
for the Constant Depth Ceramic Tubular Liner (CT73)

Frequency  R/poCo R(®)/ poCo X/ poCo X (@)/ poCo
kHz (exp.) (fit) (exp) (fit)
0.5 0.41 0.406 ~1.56 ~1.587
1.0 0.46 0.476 0.03 0.113
15 1.08 1.078 1.38 1.638
2.0 4.99 5.009 0.25 —0.276
2.5 1.26 1.263 ~153 ~1.237

3.0 0.69 0.673 —0.24 —0.286
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Single-frequency impedance functiofThe substitution of1 — z=1)/At into Eq. (34)

(Z(w)/poCo = Ry +iw a+ b/iw) foriw results in

Zs(2) g+ @zt + @z 2

£0Co 1-z1 ' (39)
where
ag = Ry + a/At + bAt
a1 = —(Ro + 2a/At) (40)
a; = a/At.
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